16,718 research outputs found

    First-principles phase diagram calculations for the HfC–TiC, ZrC–TiC, and HfC–ZrC solid solutions

    Get PDF
    We report first-principles phase diagram calculations for the binary systems HfC–TiC, TiC–ZrC, and HfC–ZrC. Formation energies for superstructures of various bulk compositions were computed with a plane-wave pseudopotential method. They in turn were used as a basis for fitting cluster expansion Hamiltonians, both with and without approximations for excess vibrational free energies. Significant miscibility gaps are predicted for the systems TiC–ZrC and HfC–TiC, with consolute temperatures in excess of 2000 K. The HfC–ZrC system is predicted to be completely miscibile down to 185 K. Reductions in consolute temperature due to excess vibrational free energy are estimated to be ~7%, ~20%, and ~0%, for HfC–TiC, TiC–ZrC, and HfC–ZrC, respectively. Predicted miscibility gaps are symmetric for HfC–ZrC, almost symmetric for HfC–TiC and asymmetric for TiC–ZrC

    There exist non orthogonal quantum measurements that are perfectly repeatable

    Full text link
    We show that, contrarily to the widespread belief, in quantum mechanics repeatable measurements are not necessarily described by orthogonal projectors--the customary paradigm of "observable". Nonorthogonal repeatability, however, occurs only for infinite dimensions. We also show that when a non orthogonal repeatable measurement is performed, the measured system retains some "memory" of the number of times that the measurement has been performed.Comment: 4 pages, 1 figure, revtex4, minor change

    Supernova Inelastic Neutrino-Nucleus Cross Sections from High-Resolution Electron Scattering Experiments and Shell-Model Calculations

    Full text link
    Highly precise data on the magnetic dipole strength distributions from the Darmstadt electron linear accelerator for the nuclei 50Ti, 52Cr and 54Fe are dominated by isovector Gamow-Teller-like contributions and can therefore be translated into inelastic total and differential neutral-current neutrino-nucleus cross sections at supernova neutrino energies. The results agree well with large-scale shell-model calculations, validating this model.Comment: 5 pages, 4 figures, RevTeX 4, version accepted in Phys. Rev. Letter

    Disclosing hidden information in the quantum Zeno effect: Pulsed measurement of the quantum time of arrival

    Full text link
    Repeated measurements of a quantum particle to check its presence in a region of space was proposed long ago [G. R. Allcock, Ann. Phys. {\bf 53}, 286 (1969)] as a natural way to determine the distribution of times of arrival at the orthogonal subspace, but the method was discarded because of the quantum Zeno effect: in the limit of very frequent measurements the wave function is reflected and remains in the original subspace. We show that by normalizing the small bits of arriving (removed) norm, an ideal time distribution emerges in correspondence with a classical local-kinetic-energy distribution.Comment: 5 pages, 4 figures, minor change

    A Bell pair in a generic random matrix environment

    Get PDF
    Two non-interacting qubits are coupled to an environment. Both coupling and environment are represented by random matrix ensembles. The initial state of the pair is a Bell state, though we also consider arbitrary pure states. Decoherence of the pair is evaluated analytically in terms of purity; Monte Carlo calculations confirm these results and also yield the concurrence of the pair. Entanglement within the pair accelerates decoherence. Numerics display the relation between concurrence and purity known for Werner states, allowing us to give a formula for concurrence decay.Comment: 4 pages, 3 figure

    Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    Get PDF
    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive

    Dark states of single NV centers in diamond unraveled by single shot NMR

    Full text link
    The nitrogen-vacancy (NV) center in diamond is supposed to be a building block for quantum computing and nanometer scale metrology at ambient conditions. Therefore, precise knowledge of its quantum states is crucial. Here, we experimentally show that under usual operating conditions the NV exists in an equilibrium of two charge states (70% in the expected negative (NV-) and 30% in the neutral one (NV0)). Projective quantum non-demolition measurement of the nitrogen nuclear spin enables the detection even of the additional, optically inactive state. The nuclear spin can be coherently driven also in NV0 (T1 ~ 90 ms and T2 ~ 6 micro-s).Comment: 4 pages, 3 figure

    Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors

    Get PDF
    Chemical sensing properties of single wire and mat form sensor structures fabricated from the same carbon nanotube (CNT) materials have been compared. Sensing properties of CNT sensors were evaluated upon electrical response in the presence of five vapours as acetone, acetic acid, ethanol, toluene, and water. Diverse behaviour of single wire CNT sensors was found, while the mat structures showed similar response for all the applied vapours. This indicates that the sensing mechanism of random CNT networks cannot be interpreted as a simple summation of the constituting individual CNT effects, but is associated to another robust phenomenon, localized presumably at CNT-CNT junctions, must be supposed.Comment: 12 pages, 5 figures,Applied Physics A: Materials Science and Processing 201

    FGB1 and WSC3 are in planta-induced beta-glucan-binding fungal lectins with different functions

    No full text
    In the root endophyte Serendipita indica, several lectin-like members of the expanded multigene family of WSC proteins are transcriptionally induced in planta and are potentially involved in beta-glucan remodeling at the fungal cell wall. Using biochemical and cytological approaches we show that one of these lectins, SiWSC3 with three WSC domains, is an integral fungal cell wall component that binds to long-chain beta 1-3-glucan but has no affinity for shorter beta 1-3- or beta 1-6-linked glucose oligomers. Comparative analysis with the previously identified beta-glucan-binding lectin SiFGB1 demonstrated that whereas SiWSC3 does not require beta 1-6-linked glucose for efficient binding to branched beta 1-3-glucan, SiFGB1 does. In contrast to SiFGB1, the multivalent SiWSC3 lectin can efficiently agglutinate fungal cells and is additionally induced during fungus-fungus confrontation, suggesting different functions for these two beta-glucan-binding lectins. Our results highlight the importance of the beta-glucan cell wall component in plant-fungus interactions and the potential of beta-glucan-binding lectins as specific detection tools for fungi in vivo

    On the nature of continuous physical quantities in classical and quantum mechanics

    Get PDF
    Within the traditional Hilbert space formalism of quantum mechanics, it is not possible to describe a particle as possessing, simultaneously, a sharp position value and a sharp momentum value. Is it possible, though, to describe a particle as possessing just a sharp position value (or just a sharp momentum value)? Some, such as Teller (Journal of Philosophy, 1979), have thought that the answer to this question is No -- that the status of individual continuous quantities is very different in quantum mechanics than in classical mechanics. On the contrary, I shall show that the same subtle issues arise with respect to continuous quantities in classical and quantum mechanics; and that it is, after all, possible to describe a particle as possessing a sharp position value without altering the standard formalism of quantum mechanics.Comment: 26 pages, LaTe
    • 

    corecore